高中立体几何知识点总结(精品六篇)。
总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,写总结有利于我们学习和工作能力的提高,因此我们需要回头归纳,写一份总结了。总结一般是怎么写的呢?以下是小编收集整理的高中立体几何知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中立体几何知识点总结 篇1
1、运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有初中数学理数的运算、整式的运算、因式分解、分式的`运算、根式的运算和解方程。初中运算能力不过关,会直接影响以后数学的学习。
2、做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;
先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的初中数学;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。
3、最重要就是兴趣问题,学习兴趣是一件非常重要的事情,如何培养我们的学习兴趣呢?首先,我们自己要做的就是调整好我们的情绪,很多同学一提起数学这两个字,负面情绪马上出现,这样,不用其他人,你自己已经把自己给放弃了!因此,想学好初中数学,最重要的是调整好自己的情绪,只有有了积极的情绪,才会有高效率的学习。
高中立体几何知识点总结 篇2
高中数学几何公理,定理 。全部13.平行四边形的判定与性质:平行四边形的定义:两组对边分别平行的四边形是平行四边形 。
平行四边形的性质:
(1)平行四边形的对边相等;
(2)平行四边形的对角相等;
(3)平行四边形的对角线互相平分;
(4)平行线之间的距离处处相等 。
平行四边形的判定:
(1)一组对边平行且相等的四边形是平行四边形;
(2)对角线互相平分的四边形是平行四边形;
(3)两组对角分别相等的四边形是平行四边形;
(4)两组对边分别相等的四边形是平行四边形
高中几何的所有定理立体几何
1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题 。
能够用斜二测法作图 。
2.空间两条直线的位置关系:平行、相交、异面的概念;
会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法 。
3.直线与平面
①位置关系:平行、直线在平面内、直线与平面相交 。
②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据 。
③直线与平面垂直的证明方法有哪些?
④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900}
⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.
4.平面与平面
(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)
(2)掌握平面与平面平行的证明方法和性质 。
(3)掌握平面与平面垂直的证明方法和性质定理 。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直 。
(4)两平面间的距离问题→点到面的距离问题→
(5)二面角 。二面角的'平面交的作法及求法:
①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;
②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形 。
③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?
平面向量
1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量 。
2. 加法与减法的代数运算:
(1) .
(2)若a=( ),b=( )则a b=( ).
向量加法与减法的几何表示:平行四边形法则、三角形法则 。
以向量 = 、 = 为邻边作平行四边形ABCD,则两条对角线的向量 = + , = - , = -
且有| |-| |≤| |≤| |+| |.
向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);
+0= +(- )=0.
3.实数与向量的积:实数 与向量 的积是一个向量 。
(1)| |=| |·| |;
(2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0.
(3)若 =( ),则 · =( ).
两个向量共线的充要条件:
(1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= .
(2) 若 =( ),b=( )则 ‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2.
4.P分有向线段 所成的比:
设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比 。
当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0;
高中立体几何知识点总结 篇3
点在线面用属于,线在面内用包含。四个公理是基础,推证演算巧周旋。
空间之中两条线,平行相交和异面。线线平行同方向,等角定理进空间。
判定线和面平行,面中找条平行线。已知线与面平行,过线作面找交线。
要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。
已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。
判定线和面垂直,线垂面中两交线。两线垂直同一面,相互平行共伸展。
两面垂直同一线,一面平行另一面。要让面与面垂直,面过另面一垂线。
面面垂直成直角,线面垂直记心间。
一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。
空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。
引进向量新工具,计算证明开新篇。空间建系求坐标,向量运算更简便。
知识创新无止境,学问思辨勇攀登。
多面体和旋转体,上述内容的延续。扮演载体新角色,位置关系全在里。
算面积来求体积,基本公式是依据。规则形体用公式,非规形体靠化归。
展开分割好办法,化难为易新天地。
高中立体几何知识点总结 篇4
1、平面的基本性质:
掌握三个公理及推论,会说明共点、共线、共面问题。
能够用斜二测法作图。
2、空间两条直线的位置关系:
平行、相交、异面的概念;
会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。
3、直线与平面
①位置关系:平行、直线在平面内、直线与平面相交。
②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。
③直线与平面垂直的'证明方法有哪些?
④直线与平面所成的角:关键是找它在平面内的射影,范围是
⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理。 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量。如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线。
4、平面与平面
(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)
(2)掌握平面与平面平行的证明方法和性质。
(3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。
(4)两平面间的距离问题→点到面的距离问题→
(5)二面角。二面角的平面交的作法及求法:
①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;
②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。
③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法。
高中立体几何知识点总结 篇5
必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。
选修课程分为4个系列:
系列1:2个模块
选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修1-2:统计案例、推理与证明、数系的扩充与复数、框图
系列2:3个模块
选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何
选修2-2:导数及其应用、推理与证明、数系的扩充与复数
选修2-3:计数原理、随机变量及其分布列、统计案例
选修4-1:几何证明选讲
选修4-4:坐标系与参数方程
选修4-5:不等式选讲
2.重难点及其考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数。
难点:函数,圆锥曲线。
高考相关考点:
1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件。
2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用。
3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和。
4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用。
5.平面向量:初等运算、坐标运算、数量积及其应用。
6.不等式:概念与性质、均值不等式、不等式的证明、不等式的`解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用。
7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系。
8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用。
9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量。
10.排列、组合和概率:排列、组合应用题、二项式定理及其应用。
11.概率与统计:概率、分布列、期望、方差、抽样、正态分布。
12.导数:导数的概念、求导、导数的应用。
13.复数:复数的概念与运算。
高中立体几何知识点总结 篇6
1.不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,wj62.com
有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,则有>1?;=1?;<1?.
概括为:作差法,作商法,中间量法等.
3.不等式的性质
(1)对称性:a>b?;
(2)传递性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可开方:a>b>0?(n∈N,n≥2).
复习指导
1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
2.“一种方法”待定系数法:求代数式的'范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
3.“两条常用性质”
(1)倒数性质:①a>b,ab>0?<;②a<0
③a>b>0,0;④0
(2)若a>b>0,m>0,则
①真分数的性质:<;>(b-m>0);